Differential effects of cerebellar, amygdalar, and hippocampal lesions on classical eyeblink conditioning in rats.

نویسندگان

  • Taekwan Lee
  • Jeansok J Kim
چکیده

Eyeblink conditioning has been hypothesized to engage two successive stages of nonspecific emotional (fear) and specific musculature (eyelid) learning, during which the nonspecific component influences the acquisition of the specific component. Here we test this notion by investigating the relative contributions of the cerebellum, the amygdala, and the hippocampus to the emergence of conditioned eyelid and fear responses during delay eyeblink conditioning in freely moving rats. Periorbital electromyography (EMG) and 22 kHz ultrasonic vocalization (USV) activities were measured concurrently from the same subjects and served as indices of conditioned eyeblink and fear responses, respectively. In control animals, conditioned EMG responses increased across training sessions, whereas USV responses were initially robust but decreased across training sessions. Animals with electrolytic lesions to their cerebellum (targeting the interpositus nucleus) were completely unable to acquire conditioned EMG responses but exhibited normal USV behavior, whereas animals with lesions to the amygdala showed decelerated acquisition of conditioned EMG responses and displayed practically no USV behavior. In contrast, hippocampal lesioned rats demonstrated facilitated acquisition of conditioned EMG responses, whereas the USV behavior was unaffected. The amygdalar involvement in eyeblink conditioning was examined further by applying the GABA(A) agonist muscimol directly into the amygdala either before or immediately after training sessions. Although pretraining muscimol infusions impaired conditioned EMG responses, post-training infusions did not. Together, these results suggest that, even during a simple delay eyeblink conditioning, animals learn about different aspects associated with the behavioral task that are subserved by multiple brain-memory systems that interact to produce the overall behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central amygdala lesions inhibit pontine nuclei acoustic reactivity and retard delay eyeblink conditioning acquisition in adult rats.

In delay eyeblink conditioning (EBC) a neutral conditioned stimulus (CS; tone) is repeatedly paired with a mildly aversive unconditioned stimulus (US; periorbital electrical shock). Over training, subjects learn to produce an anticipatory eyeblink conditioned response (CR) during the CS, prior to US onset. While cerebellar synaptic plasticity is necessary for successful EBC, the amygdala is pro...

متن کامل

Neurobiology of Learning and Memory

The effects of bilateral hippocampal aspiration lesions on later acquisition of eyeblink conditioning were examined in developing Long–Evans rat pups. Lesions on postnatal day (PND) 10 were followed by evaluation of trace eyeblink conditioning (Experiment 1) and delay eyeblink conditioning (Experiment 2) on PND 25. Pairings of a tone conditioned stimulus (CS) and periocular shock unconditioned ...

متن کامل

Cerebellar volume in humans related to magnitude of classical conditioning.

Neural circuits in the cerebellum are essential for eyeblink classical conditioning, and hippocampal activation is also present during acquisition. Anatomical (volumetric) brain MRI, delay eyeblink conditioning and neuropsychological tests were administered to eight healthy older subjects. The correlation between cerebellar volume (corrected for total cerebral volume) and conditioned response p...

متن کامل

Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice.

Converging lines of evidence from rabbits, rats, and humans argue for the crucial involvement of the cerebellum in classical conditioning of the eyeblink/nictitating membrane response in mammals. For example, selective lesions (permanent or reversible) of the cerebellum block both acquisition and retention of eyeblink conditioning. Correspondingly, electrophysiological and brain-imaging studies...

متن کامل

Selective hippocampal lesions disrupt a novel cue effect but fail to eliminate blocking in rabbit eyeblink conditioning.

The classical conditioning task of blocking involves the adding of a novel but redundant stimulus to a previously trained stimulus. Both blocking and novelty detection are thought to involve the hippocampus. Previously, Solomon (1977) found that nonselective aspiration lesions of the hippocampal region eliminated blocking in rabbit eyeblink conditioning. We tested the effects of selective ibote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 13  شماره 

صفحات  -

تاریخ انتشار 2004